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Prologue

This lecture has been taught for the first time in the Master of Computational Science
at the Università della Svizzera italiana as a 3 ECTS course. It is mainly based on the
text book “Meshfree Approximation Methods with MATLAB” by G. E. Fasshauer. The
chapter on numerical methods based on low-rank approximations is based on current
literature in the field, while the chapter on support vector machines follows the lecture
notes of a similar lecture from H. Harbrecht at the University of Basel.
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1. Introduction

In many applications, we are given a set of data values, for example, measurements or
samples, and data sites for which these data were obtained. We then want to come up with
a model sf that matches the data with respect to a certain criterion. Conceptionally, we
distinguish two different settings depending on if the underlying data generating process
f is known or unknown. If f is unknown, we want to derive a model sf , which allows
us to extrapolate the data for unseen data sites. The “goodness” of fit can be defined
here in several different ways. If f is known, for example, as solution operator of a partial
differential equation, the goal is to derive a surrogate model sf , that is cheaper to evaluate
than f itself. In either case, if the data are not located on a uniform grid, we speak of
scattered data approximation.
We start from the data interpolation problem, which aims at exactly matching a given
set of data. The data sites are always labelled by xi, i = 1, . . . , N and we introduce the
set

X := {x1, . . . ,xN} ⊂ Ω

for some set Ω ⊂ Rd. In this lecture, we focus on scalar data values and denote them by
yi ∈ R, i = 1, . . . , N .

Problem 1.1 (Scattered data interpolation) Given data (xi, yi), i = 1, . . . , N , with
xi ∈ Rd and yi ∈ R, find a continuous function sf such that

sf (xi) = yi for i = 1, . . . , N. (1.1)

A common solution to (1.1) is to assume that sf is a linear combination of certain functions
φj, i.e.,

sf (x) =
N∑
j=1

cjφj(x) for all x ∈ Rd. (1.2)

Inserting the interpolation condition (1.1), yields the linear system

Ac = y,

where the the generalized Vandermonde matrix is given by

A := [φj(xi)]
N
i,j=1 ∈ RN×N .

Further, we set c := [cj]
N
j=1 ∈ RN and y := [yi]

N
i=1 ∈ RN .

Problem 1.1 is well-posed, i.e., a solution exists and is unique, iff A is non-singular.
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Example 1.2 Given x1, . . . , xN ∈ R and y1, . . . , yN ∈ R, we are looking for a polynomial
p ∈ ΠN−1 := span{1, x, . . . , xN−1} such that p(xi) = yi for i = 1, . . . , N . With respect to
the monomial basis, the Vandermonde matrix is given by

A =

1 x1 · · · xN−1
1

...
...

...
1 xN · · · xN−1

N

 ∈ RN×N .

It can be shown that its determinant satisfies

detA =
∏

0<i<j≤N

(xj − xi).

Therefore, we have detA ̸= 0 whenever xi ̸= xj for i ̸= j, which directly implies the
existence and uniqueness of a solution to (1.1) and, hence, the well-posedness of the
polynomial interpolation problem. △

Generalizing the ideas of polynomial interpolation yields the concept of Haar spaces.

Definition 1.3 Let V ⊂ C(Ω) be a finite-dimensional function space with basis
φ1, . . . , φN . The space V is a Haar space, iff detA ̸= 0 for every set of mutually
distinct points x1, . . . ,xN ∈ Ω, where A is the generalized Vandermonde matrix from
(1.1).

The immediate question issuing from the previous definition is: What are examples of
Haar spaces in higher dimensions? We have the following negative result.

Theorem 1.4 (Mairhuber-Curtis) If Ω ⊂ Rd, d > 1 contains an interior point, then
there exist no Haar spaces except for one-dimensional ones.

Proof. Let d > 1 and assume that V ⊂ C(Ω) is a Haar space with basis φ1, . . . φN with
N > 1. We prove the claim by contradiction. Let x1, . . . ,xN ∈ Ω be a set of mutually
distinct interior points. By assumption there holds detA ̸= 0. Now consider a simple
closed path p connecting only x1 and x2. We can interchange the positions of x1 and
x2, effectively swapping the first two rows of A by continuously moving along p. This
in turn changes the sign of detA. Since φ1, φ2, p as well as det are continuous functions,
this means that there exist values x̃1, x̃2 along p, such that there holds det Ã = 0 for the
corresponding generalized Vandermonde matrix. This is a contradiction.

The theorem tells us that, if we want to have a well-posed multivariate scattered data
interpolation problem, we can no longer fix the basis in advance, as we did in Example 1.2.
Instead, the basis should depend on the data locations.

Example 1.5 (Interpolation by distance matrices) Given data sites x1 . . . , xN ∈ R and
values y1, . . . , yN ∈ R, we make the ansatz

sf (x) =
N∑
j=1

cj|x− xj|,

which amounts to the linear spline interpolant (prove!) if we solve (1.1).
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For d > 1, this approach can be generalized by employing the euclidean norm:

sf (x) =
N∑
j=1

cj∥x− xj∥2.

△

We call the functions ϕj(x) = ∥x − xj∥2, j = 1, . . . , N , radial basis functions, since ϕj

only depends on the distance of x from the data site xj.

Definition 1.6 A function K : Rd → R is called radial, iff there exists a univariate
function k : [0,∞) → R such that K(x) = k(r), where r := ∥x∥ and ∥ · ∥ is any norm
on Rd. We say that K is a basic function and that φj(x) = K(x− xj), j = 1, . . . , N ,
are radial basis functions.

We finish this chapter by introducing a class of radial functions that always give rise to
well-posed problems.

Definition 1.7 A function K : Rd → R is positive definite, iff the generalized Vander-
monde matrix A = [φj(xi)]

N
i,j=1 := [K(xi −xj)]

N
i,j=1 is symmetric positive semidefinite

for any mutually distinct x1, . . . ,xN ∈ Rd and any N ∈ N. It is strictly positive
definite, iff A is symmetric positive definite.

Example 1.8 The Matérn kernels

kν(r) :=
21−ν

Γ(ν)

(√
2νr

ℓ

)ν

Bν

(√
2νr

ℓ

)
, ν, ℓ > 0,

where Bν is the modified Bessel function of the second kind of order ν, are strictly positive
definite. In particular, there holds

k1/2(r) = e−
r
ℓ and k∞ = e−

r2

2ℓ2 .

△

Fact 1.9

1. If K1, . . . , Kn are positive definite and ci ≥ 0 for i = 1, . . . , n, then K =
∑n

i=1 ciKi

is also positive definite. If at least one Ki is strictly positive definite and ci > 0,
then K is strictly positive definite.

2. If K is positive definite, then K(0) ≥ 0.

3. If K is positive definite, then K(x) = K(−x).

4. Any positive definite function is bounded, i.e., |K(x)| ≤ K(0).

5. If K is positive definite with K(0) = 0, then K ≡ 0.

6. The product of (strictly) positive definite functions is (strictly) positive definite.
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2. Scattered data interpolation with poly-
nomial precision

In many applications, it is desirable that an approximation can represent polynomials
exactly. As we have seen in Theorem 1.4, in this case the interpolation points need to be
carefully chosen.

Definition 2.1 We call a set X = {x1, . . . ,xN} ⊂ Rd q-unisolvent, iff the only poly-
nomial p ∈ Pq := span{xα : α ∈ Nd, ∥α∥1 ≤ q} interpolating zero data on X is
p ≡ 0. This means that the matrix P := [xα

i ]i=1,...,N,∥α∥1≤q has full column rank
mq := dimPq =

(
q+d
d

)
Taking polynomials into account for the approximation gives rise to a specific version of
Problem 1.1 according to

sf (x) =
N∑
j=1

cjφj(x) +

mq∑
k=1

dkpk(x) (2.1)

for a basis {p1, . . . , pmq} of Pq and q ≥ 0.
Enforcing the interpolation conditions sf (xi) = yi for i = 1, . . . , N leads to a linear system
of N equations for N + mq unknowns. To determine the remaining mq coefficients, we
add the additional conditions

N∑
j=1

cjpk(xj) = 0 for k = 1, . . . ,mq. (2.2)

Introducing the matrices

A := [φj(xi)]
N
i,j=1 ∈ RN×N and P := [pj(xi)] i=1,...,N

j=1,...,mq

∈ RN×mq

as well as the vectors c := [c1, . . . , cN ]
⊺, d := [d1, . . . , dmq ]

⊺ yields the saddle point system[
A P
P ⊺ 0

] [
c
d

]
=

[
y
0

]
. (2.3)

In view of (2.1), we can weaken the conditions on the positive definiteness of the basic
function and still obtain a well-posed problem.
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Definition 2.2 A function K : Rd → R is conditionally positive definite of order (q+1),
iff for any mutually distinct points x1, . . . ,xN ∈ Rd and any N ∈ N the generalized
Vandermonde matrix A := [K(xi − xj)]

N
i,j=1 satisfies

c⊺Ac ≥ 0 for any c ∈ kernP ⊺, (2.4)

where P := [xα
i ] i=1,...,n

∥α∥1≤q
.

It is strictly conditionally positive definite, iff equality in (2.4) only holds for c = 0.

We have the following relation between conditionally positive definite functions.

Fact 2.3 A function that is (strictly) conditionally positive definite of order (q+ 1) is
also (strictly) conditionally positive definite of any higher order. In particular, a func-
tion that is (strictly) conditionally positive definite of order 1 is (strictly) conditionally
positive definite of any order.

The next theorem guarantees the solvability of (2.3) in case of strictly conditionally pos-
itive basic functions.

Theorem 2.4 Let K : Rd → R be strictly conditionally positive definite of order (q+1)
and let x1, . . . ,xN be q-unisolvent. Then, the linear system (2.3) is uniquely solvable.

Proof. To prove the assertion, we show that the kernel of the matrix in (2.3) is trivial.
To this end, let [c,d]⊺ be a solution to the homogenous system, i.e., a solution for y = 0.
We show that [c,d]⊺ = 0 is the only solution. Multiplying the top block of (2.3) by c⊺

yields
c⊺Ac+ c⊺Pd = 0.

From the bottom block, we have P ⊺c = 0 or c⊺P = 0⊺. Consequently, we infer c⊺Ac = 0.
Since K is strictly conditionally positive definite of oder (q + 1), this implies c = 0.
By the unisolvency of x1, . . . ,xN , the matrix P has full column rank. Therefore, d = 0
is the only solution to

Pd = Ac+ Pd = 0

of the top block of (2.3). This completes the proof.

Remark Definition 2.2 and Theorem 2.4 are a special, finite dimensional, instance of the
inf-sup- or Ladyzhenskaya-Babuška-Brezzi (LBB) condition, which guarantees the well-
posedness of (infinite dimensional) saddle point problems. △

Example 2.5 The generalized multiquadrics K(x) := (1+∥x∥2)β, 0 < β ̸∈ N, are strictly
conditionally positive definite of order ⌈β⌉.
The radial powers K(x) := ∥x∥β, 0 < β ̸∈ 2N are strictly conditionally positive definite of
order ⌈β/2⌉. This means that the distance functions from Example 1.5 are conditionally
positive definite of order 1.
Duchon’s thin plate splines K(x) := ∥x∥2β log ∥x∥, β ∈ N∗, are strictly conditionally
positive definite of order β + 1. △
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3. Reproducing kernel Hilbert spaces

Definition 3.1 Let (H, ⟨·, ·⟩H) be a real Hilbert space of functions f : Ω → R. A
function K : Ω× Ω → R is a reproducing kernel for H, iff

1. K(x, ·) ∈ H for all x ∈ Ω,

2. ⟨K(x, ·), f⟩H = f(x) for all f ∈ H, x ∈ Ω.

If H exhibits a reproducing kernel, we call it a reproducing kernel Hilbert space (RKHS).

The question if the reproducing kernel is unique is answered by the following

Fact 3.2 The reproducing kernel of an RKHS is unique.

The existence of a reproducing kernel is equivalent to the point evaluation functional δx
being continuous for every x ∈ Ω, i.e., there exists Mx > 0 such that

|δxf | = |f(x)| ≤ Mx∥f∥H for all f ∈ H.

This means that δx is contained in the dual space H′ of H for any x ∈ Ω. By the
Riesz representation theorem, there exists (Jδx) ∈ H such that ⟨(Jδx), f⟩H = f(x) for all
f ∈ H, i.e., (Jδx)(y) is the reproducing kernel.
The next theorem establishes some properties of a reproducing kernel.

Theorem 3.3 Let (H, ⟨·, ·⟩H) be an RKHS. Then, there hold the following statements:

1. K(x,y) = ⟨K(y, ·), K(x, ·)⟩H for all x,y ∈ Ω.

2. K(x,y) = K(y,x) for all x,y ∈ Ω.

3. Convergence in H implies pointwise convergence, i.e., if ∥fn−f∥H → 0 for n → ∞,
then |fn(x)− f(x)| → 0 for all x ∈ Ω.

Proof. By Definition 3.1.1., we have K(y, ·), K(x, ·) ∈ H. Therefore, the reproducing
property Definition 3.1.2. yields

⟨K(y, ·), K(x, ·)⟩H = K(x,y) for all x,y ∈ Ω.

This proves the first item of the theorem.
The symmetry of the kernel is a direct consequence of the symmetry of the inner product
⟨·, ·⟩H and the first item.
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Finally, the third item is obtained by the Cauchy-Schwarz inequality according to

|fn(x)− f(x)| = |⟨K(x, ·), fn − f⟩H| ≤ ∥K(x, ·)∥H∥fn − f∥H.

Remark There holds ∥K(x, ·)∥H =
√
K(x,x). △

The reproducing kernel of an RKHS is positive definite in the sense of Definition 1.7, if
we replace everywhere K(xi − xj) by K(xi,xj).

Definition 3.4 Let K : Ω× Ω → R be a kernel. We say that K is positive definite, iff
the kernel matrix

K := [K(xi,xj)]
N
i,j=1 (3.1)

is positive semi-definite for any choice of mutually distinct points x1, . . . ,xN and any
N ∈ N. It is strictly positive definite if the kernel matrix is positive definite.

The following lemma is a direct consequence of the reproducing property and characterizes
the kernel matrix.

Lemma 3.5 Suppose that (H, ⟨·, ·⟩H) is an RKHS with reproducing kernel K : Ω×Ω →
R. Given a set of mutually distinct points x1, . . . ,xN . There holds

K = ⟨Φ,Φ⊺⟩H :=

 ⟨φ1, φ1⟩H · · · ⟨φ1, φN⟩H
... . . . ...

⟨φN , φ1⟩H · · · ⟨φN , φN⟩H

 ,

where φi := Φ(xi) ∈ H with Φ: Ω → H, x 7→ K(x, ·) is the canonical feature map.
The vector Φ := [φ1, . . . , φN ]

⊺ ∈ HN is called canonical feature vector.

Reproducing kernels are particularly positive definite function. This is addressed by the
following

Theorem 3.6 Suppose that (H, ⟨·, ·⟩H) is an RKHS with reproducing kernel K : Ω ×
Ω → R. Then K is positive definite. Moreover, K is strictly positive definite,
iff δx1 , . . . , δxN

are linearly independent for any choice of mutually distinct points
x1, . . . ,xN ∈ Ω and any N ∈ N.

Proof. Let x1, . . . ,xN ∈ Ω be mutually distinct and let c ∈ RN with c ̸= 0. There holds
for the kernel matrix, cp. (3.1), that

c⊺Kc = c⊺⟨Φ,Φ⊺⟩Hc = ⟨c⊺Φ,Φ⊺c⟩H = ⟨Φ⊺c,Φ⊺c⟩H = ∥Φ⊺c∥2H ≥ 0.

This proves the positive definiteness.
To prove the second claim, assume that K is not strictly positive definite. Hence, there
exists a vector c ̸= 0 such that c⊺Kc = 0. From the first part, we infer Φ⊺c = 0. Thus,
for every f ∈ H, we obtain

0 = ⟨f,Φ⊺c⟩H =

〈
f,

N∑
i=1

ciK(xi, ·)
〉

H
=

N∑
i=1

ci⟨f,K(xi, ·)⟩H =
N∑
i=1

ciδxi
(f)
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by the Riesz representation theorem. Consquently, we have∥∥∥∥ N∑
i=1

ciδxi

∥∥∥∥
H′

= sup
0̸=f∈H

∣∣∑N
i=1 ciδxi

(f)
∣∣

∥f∥H
= 0,

which implies the linear dependence of δx1 , . . . , δxN
.

The other implication is shown analogously.

The reverse statement of Theorem 3.6 is also correct: Each strictly positive definite kernel
can be associated to an RKHS, its native space. Motivated by the fact that for f =∑N

i=1 ciK(xi, ·) holds
∥f∥2H = c⊺Kc,

we define the linear space

HK(Ω) :=

{ N∑
i=1

ciK(xi, ·) : ci ∈ R,xi ∈ Ω for i = 1, . . . , N, N ∈ N
}
.

On HK(Ω), we introduce the bilinear form

(f, g)K =

( N∑
i=1

ciK(xi, ·),
M∑
j=1

djK(yj, ·)
)

K

:= c⊺[K(xi,yj)] i=1,...,N
j=1,...,M

d,

where M = N = ∞ is possible.

Theorem 3.7 If K : Ω × Ω → R is symmetric and strictly positive definite, then the
bilinear form (·, ·)K defines an inner product on HK(Ω). Moreover, HK(Ω) is a pre-
Hilbert space with reproducing kernel K.

Proof. The bilinear form (·, ·)K is symmetric due to

(f, g)K = c⊺[K(xi,yj)] i=1,...,N
j=1,...,M

d =
(
[K(xi,yj)] i=1,...,N

j=1,...,M
d
)⊺

c

= d⊺[K(xi,yj)]
⊺
i=1,...,N
j=1,...,M

c = d⊺[K(yj,xi)] j=1,...,M
i=1,...,N

c = (g, f)K ,

which directly follows from the symmetry of K. The definiteness follows from the positive
definiteness of K according

(f, f)K = c⊺Kc > 0

for all f = Φ⊺c ̸= 0.
Finally, the reproducing property is obtained by

(
K(x, ·), f

)
K
= 1[K(x,xj)]j=1,...,Nc =

n∑
j=1

cjK(x,xj) =
n∑

j=1

cjK(xj,x) = f(x).

The theorem provides that
(
HK(Ω), (·, ·)K

)
is a pre-Hilbert space, hence it is not neces-

sarily complete. However, the next theorem guarantees that each normed vector space
exhibits a completion that is unique up to isometry.
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Theorem 3.8 Let (V, ∥ · ∥V ) denote a normed vector space. There exists a Banach
space (V , ∥ · ∥V ) called completion of V and an injective mapping J : V → V such that

J(v + w) = J(v) + J(w), J(α · v) = α · J(v), and ∥v∥V = ∥J(v)∥V

for all v ∈ V . The completion is uniquely determined up to isometry.

Proof. We consider the vector space of all Cauchy sequences on V , which we denote by

Ṽ := {ṽ = (vn)n∈N ⊂ V : (vn)n∈N is a Cauchy sequence}.

On Ṽ we introduce the equivalence relation

(vn)n∈N ∼ (wn)n∈N iff ∥vn − wn∥V is a null sequence in R

and define the equivalence classes [ṽ] := {w ∈ Ṽ : v ∼ w}. With the addition and scalar
multiplication for Cauchy sequences, the set V := {[ṽ] : ṽ ∈ Ṽ } becomes a vector space.
Since |∥vn∥V − ∥vm∥V | ≤ ∥vn − vm∥V for any Cauchy sequence (vn)n∈N, limn→∞ ∥vn∥V
exists in R and we define

∥[ṽ]∥V := lim
n→∞

∥vn∥V .

The mapping J : V → V is given by J(v) = [(v)n∈N], i.e., the equivalence class which
contains the constant sequence with value v. The linearity of the mapping J is a conse-
quence of the fact that V is a vector space. Moreover J is injective, since v ̸= w obviously
implies J(v) ̸= J(w). Further, it holds ∥J(v)∥V = limn→∞ ∥v∥V = ∥v∥V .
It remains to show that the space (V , ∥ · ∥V ) is indeed a Banach space. To that end, let(
[ṽ]k

)
k∈N ⊂ V be a Cauchy sequence. We denote the n-th element of some representer of

[ṽ]k by vk,n. For each k we can now choose nk such that

∥vk,m − vk,nk
∥V ≤ k−1 if m > nk. (3.2)

We show that the sequence

ṽ⋆ :=
(
v1,n1 , v2,n2 , . . . , vk,nk

, . . .
)
⊂ V (3.3)

is a Cauchy sequence and that
(
[ṽ]k

)
k∈N converges towards [ṽ⋆]. We have

∥[ṽ]k − J(vk,nk
)∥V = lim

m→∞
∥vk,m − vk,nk

∥V ≤ k−1

due to (3.2). Note that the limit exists, since the sum of two Cauchy sequences forms a
Cauchy sequence. Further, we derive

∥vk,nk
− vm,nm∥V = ∥J(vk,nk

)− J(vm,nm)∥V
≤ ∥[ṽ]k − J(vk,nk

)∥V + ∥[ṽ]m − J(vm,nm)∥V + ∥[ṽ]k − [ṽ]m∥V
≤ k−1 +m−1 + ∥[ṽ]k − [ṽ]m∥V .

(3.4)

This implies that (3.3) is a Cauchy sequence. We find

∥[ṽ⋆]− [ṽ]k∥V ≤ ∥[ṽ⋆]− J(vk,nk
)∥V + ∥J(vk,nk

)− [ṽ]k∥V
≤ ∥[ṽ⋆]− J(vk,nk

)∥V + k−1.
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The first term on the right hand side can be bounded with the help of (3.4) in accordance
with

∥[ṽ⋆]− J(vk,nk
)∥V = lim

m→∞
∥vm,nm − vk,nk

∥V

≤ lim
m→∞

(
k−1 +m−1 + ∥[ṽ]k − [ṽ]m∥V

)
= lim

m→∞
∥[ṽ]k − [ṽ]m∥V + k−1.

Again the limit exists and is bounded by some ϵk, as ([ṽ]k)k∈N is a Cauchy sequence and
it holds ϵk → 0 for k → ∞. Combining the two estimates yields

lim
k→∞

∥[ṽ⋆]− [ṽ]k∥V = 0,

which implies the completeness of V .

Definition 3.9 The completion NK(Ω) := HK(Ω)
∥·∥K with respect to the norm

∥f∥K :=
√
(f, f)K is called native space of K.

Another characterization of the native space is given by the eigenfunctions of the linear
operator

TK : L2(Ω) → L2(Ω), (TKv)(x) :=

∫
Ω

K(x,y) dy.

Fact 3.10 (Mercer) Let K ∈ C(Ω × Ω) be a continuous and positive definite kernel.
Then, there holds

K(x,y) =
∞∑
i=1

λiϕi(x)ϕi(y),

where {(λi, ϕi)}∞i=1 are the eigen-pairs of the compact operator TK .

The previous fact allows for a spectral characterization of the native space. To this end,
we endow

H :=

{
f : Ω → R : f =

∞∑
i=1

ciϕi, ci ∈ R
}

with the inner product

⟨f, g⟩H =

〈 ∞∑
i=1

ciϕi,
∞∑
i=1

diϕi

〉
H
:=

∞∑
i=1

cidi
λi

=
∞∑
i=1

(f, ϕi)L2(Ω)(g, ϕi)L2(Ω)

λi

.

There holds

⟨K(x, ·), f⟩H =
∞∑
i=1

(
K(x, ·), ϕi

)
L2(Ω)

(f, ϕi)L2(Ω)

λi

=
∞∑
i=1

(∑∞
j=1 λjϕj(x)ϕj(·), ϕi

)
L2(Ω)

(f, ϕi)L2(Ω)

λi

=
∞∑
i=1

λiϕi(x)(f, ϕi)L2(Ω)

λi

=
∞∑
i=1

ciϕi(x) = f(x).

Consequently, we may set ⟨·, ·⟩NK(Ω) := ⟨·, ·⟩H and obtain

NK(Ω) = {f ∈ L2(Ω) : ⟨f, f⟩NK(Ω) < ∞}.
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4. Approximation results

In this chapter, we derive approximation results based on the fill-distance.

Definition 4.1 Given Ω ⊂ Rd and X = {x1, . . . ,xN} ⊂ Ω, we introduce the fill
distance

hX,Ω := sup
x∈Ω

min
xi∈X

∥x− xi∥2. (4.1)

and the separation distance

qX := min
xi ̸=xj

∥xi − xj∥2. (4.2)

We call X quasi-uniform, iff there exists a constant c ≥ 1 such that qX/c ≤ hX,Ω ≤ cqX .

We start by introducing the concept of Lagrange bases. To this end, we recall the kernel
matrix

K = [K(xi,xj)]
N
i,j=1

and the canonical feature vector

Φ(x) = [K(xi,x)]
N
i=1 = [φ1(x), . . . , φN(x)]

⊺.

Further, we denote the canonical basis in RN by e1, . . . , eN .

Theorem 4.2 Let K be a strictly positive definite kernel. Then, for any mutually
distinct points x1, . . . ,xN , the Lagrange basis is given by

ℓj(x) :=
N∑
k=1

c
(j)
k K(xk,x) = c(j)Φ(x)

with c(j) := e⊺
jK

−1, j = 1, . . . , N , i.e., the functions ℓj satisfy ℓj(xi) = δi,j.

Proof. There holds

ℓj(xi) =
N∑
k=1

c
(j)
k K(xk,xi) = e⊺

jK
−1Φ(xi) = e⊺

jei = δi,j,

since Φ(xi) is the i-th column of K.

Given a function f : Ω → R we can write its interpolant according to

sf (x) =
N∑
j=1

f(xj)ℓj(x), x ∈ Ω.
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To derive an error estimate in terms of the fill-distance, an important tool is the power
function.

Definition 4.3 Let Ω ⊂ Rd and K : Ω × Ω → R a continuous and strictly positive
definite kernel. Given any set X = {x1, . . . ,xN} of mutually distinct points, the power
function is defined as

PK,X(x) :=

∥∥∥∥K(x, ·)−
N∑
j=1

ℓj(x)K(xj, ·)
∥∥∥∥
NK(Ω)

, x ∈ Ω.

A direct calculation yields the following

Fact 4.4 Let Ω ⊂ Rd and K : Ω × Ω → R a continuous and strictly positive definite
kernel. Given any set X = {x1, . . . ,xN} of mutually distinct points, there holds

PK,X(x) =

√
K(x,x)−Φ⊺(x)K−1Φ(x), x ∈ Ω,

and, hence, 0 ≤ PK,X(x) ≤
√
K(x,x).

The point-wise approximation error can be bounded by the power function.

Theorem 4.5 Let Ω ⊂ Rd and K : Ω × Ω → R a continuous and strictly positive
definite kernel and X = {x1, . . . ,xN} be a set of mutually distinct points. Then, there
holds for every f ∈ NK(Ω) that

|f(x)− sf (x)| ≤ PK,X(x)∥f∥NK(Ω), x ∈ Ω.

Proof. We have

sf (x) =
N∑
j=1

f(xj)ℓj(x) =
N∑
j=1

⟨K(xj, ·), f⟩NK(Ω)ℓj(x) =

〈 N∑
j=1

ℓj(x)K(xj, ·), f
〉

NK(Ω)

by the reproducing property. Consequently, we obtain

|f(x)− sf (x)| =
∣∣∣∣〈K(x, ·)−

N∑
j=1

ℓj(x)K(xj, ·), f
〉

NK(Ω)

∣∣∣∣
≤ PK,X(x)∥f∥NK(Ω)

by the Cauchy-Schwarz inequality.

Fact 4.6 Let Ω ∈ Rd satisfy an interior cone condition, i.e., there exists an angle
α > 0 such that the interior angle at every corner of Ω is bigger than α. Moreover,
let K ∈ C2k(Ω × Ω) be a strictly positive definite kernel. Then there exist constants
CK , h0 > 0 such that

PK,X(x) ≤ CKh
k
X,Ω

whenever hX,Ω ≤ h0.
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Combining Theorem 4.5 with the preceding fact yields the final error estimate.

Theorem 4.7 Let Ω ∈ Rd satisfy an interior cone condition. Moreover, let K ∈
C2k(Ω× Ω) be a strictly positive definite kernel and let X = {x1, . . . ,xN} be a set of
mutually distinct points. Then, there holds for every f ∈ NK(Ω) that

|f(x)− sf (x)| ≤ CKh
k
X,Ω∥f∥NK(Ω), x ∈ Ω,

whenever hX,Ω ≤ h0.
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5. Numerical methods

In this chapter, we focus on the situation where the basic or kernel function under con-
sideration is positive definite. As a consequence, the generalized Vandermonde or kernel
matrix K = [K(xi,xj)]

N
i,j=1 ∈ RN×N is positive semi-definite. We need the following

result.

Lemma 5.1 Let A be a symmetric and positive semi-definite matrix. Then, the Schur
complement S := A2,2 −A2,1A

−1
1,1A1,2 is well defined for any block partitioning of

A =

[
A1,1 A1,2

A2,1 A2,2

]
for which A−1

1,1 exists. Moreover, A1,1 is always symmetric and positive semi-definite,
while S is symmetric and positive definite.

Proof. Let [ xy ] ∈ RN be partitioned similarly to A. Since[
A1,1 A1,2

A2,1 A2,2

]
= A = A⊺ =

[
A⊺

1,1 A⊺
2,1

A⊺
1,2 A⊺

2,2

]
,

we obtain
A1,1 = A⊺

1,1, A2,2 = A⊺
2,2, A1,2 = A⊺

2,1.

Consequently, A1,1 is symmetric and there holds

0 ≤
[
x
0

]⊺
A

[
x
0

]
=

[
x
0

]⊺ [
A1,1x
A2,1x

]
= x⊺A1,1x.

Therefore, A1,1 is positive semi-definite. In fact, it is even positive definite as A−1
1,1 exists

by assumption.
Furthermore, there holds

S⊺ = A⊺
2,2 −A⊺

1,2A
−⊺
1,1A

⊺
2,1 = A2,2 −A2,1A

−1
1,1A1,2 = S.

Finally, we consider [ xy ] with x = −A−1
1,1A1,2y. This yields

0 ≤
[
x
y

]⊺
A

[
x
y

]
=

[
x
y

]⊺ [
A1,1x+A1,2y
A2,1x+A2,2y

]
=

[
x
y

]⊺ [ −A1,2y +A1,2y
−A2,1A

−1
1,1A1,2y +A2,2y

]
=

[
x
y

]⊺ [
0
Sy

]
= y⊺Sy,

which yields the semi-definiteness of S.
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Given a positive semi-definite matrix A, successively reducing the Schur complement by
setting

A1 := A, ℓi :=
1√

a
(i)
π(i),π(i)

a
(i)
:,π(i), Ai+1 := Ai − ℓiℓ

⊺
i

for a permutation π of the set {1, . . . N} leads to a representation

A =

rank(A)∑
i=1

ℓiℓ
⊺
i ,

given that all pivots a
(i)
π(i),π(i) are non-zero. In this case, also all matrices Ai, i =

1, . . . , rank(A) are positive semi-definite. This can be seen by introducing the permu-
tation matrix P := [eπ(1), . . . , eπ(N)]

⊺ and considering the matrix PAP ⊺ in Lemma 5.1.

Remark For π(i) = i, we obtain the well known Cholesky decomposition. △

Lemma 5.2 Let A be a symmetric and positive semi-definite matrix. Then, there
holds

|ai,j| ≤
√
ai,iaj,j for all i, j = 1, . . . , N.

Proof. The positive semi-definiteness of the Schur complement established by Lemma 5.1
holds true for any pivot element ai,i, i = 1, . . . , N . In particular, all diagonal elements of
the Schur complement have to be non-negative, which implies

0 ≤ aj,j −
a2i,j
ai,i

or |ai,j| ≤
√
ai,iaj,j

as claimed.

A direct consequence of the previous lemma is that the largest element of a positive
semi-definite matrix is always located on the diagonal, i.e.,

|ai,j| ≤
√
ai,iaj,j ≤

ai,i + aj,j
2

≤ max
i=1,...,N

ai,i.

Therefore, if all diagonal elements are zero, the matrix has to be the zero matrix. This
motivates the following pivoted version of the Cholesky decomposition, which greedily
removes the largest element from the Schur complement.
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Algorithm 5.3 (Pivoted Cholesky Decomposition)
input: symmetric and positive semidefinite matrix K ∈ RN×N , ε ≥ 0
output: low-rank approximation K ≈ LL⊤

and biorthogonal basis B such that B⊤L = Im

1: Initialization: set m := 1, d := diag(K), L := [ ], B := [ ], err := ∥d∥1
2: while err > ε
3: determine π(m) := argmax1≤i≤N di
4: compute

ℓm :=
1√
dπ(m)

(
K −LL⊤

)
eπ(m) and bm :=

1√
dπ(m)

(
I −BL⊤

)
eπ(m)

5: set L := [L, ℓm], B := [B, bm]
6: set d := d− ℓm ⊙ ℓm, where ⊙ denotes the Hadamard product
7: set err := ∥d∥1, m := m+ 1

By the previous considerations, the pivoting strategy in Algorithm 5.3 amounts to a total
pivoting, which always eliminates the largest entry of the Schur complement. Moreover,
the algorithm computes also the biorthogonal basis associated to L.

Theorem 5.4 For any ε ≥ 0, Algorithm 5.3 computes N ×m-matrices B and L with
m ≤ rankK such that K −LL⊺ is positive semi-definite and

trace
(
K −LL⊺

)
≤ ε,

B⊺L = I,

KB = L.

Proof. Without loss of generality, we assume that always π(m) = m for m ≤ rankK.
Otherwise, perform the proof with the accordingly permuted matrix K. The error bound
is directly inferred from the truncation criterion.
To prove the other claims, we observe that Lm is a lower-triangular matrix. From line 4 of
the algorithm, it follows that bi ∈ span{e1, . . . , ei} for i ≤ m, i.e. Bm is upper triangular.
We prove inductively that B⊺

mLm = Im. For m = 1, there holds

B⊺
1L1 = b⊺1ℓ1 =

1√
d1

e⊺
1ℓ1 = [1] = I1,

since ℓ1,1 =
√
d1. Now, let the induction hypothesis hold for m− 1 and consider the block

matrix

B⊺
mLm = [Bm−1, bm]

⊺[Lm−1, ℓm] =

[
B⊺

m−1Lm−1 B⊺
m−1ℓm

b⊺mLm−1 b⊺mℓm

]
(5.1)

By the induction hypothesis, there holds B⊺
m−1Lm−1 = Im−1. Thus, since Lm is lower

triangular, we obtain
B⊺

m−1ℓm = 0 ∈ R(m−1)×1, (5.2)

and it remains to show that b⊺mLm = b⊺m[Lm−1, ℓm] = [0, . . . , 0, 1] ∈ R1×m. From the
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induction hypothesis and (5.2) it follows that B⊺
m−1Lm = [I(m−1),0]. Hence, we infer

b⊺mLm =
1√
dm

(
em −Bm−1L

⊺
m−1em

)⊺
Lm =

1√
dm

(
e⊺
mLm − e⊺

mLm−1B
⊺
m−1Lm

)
=

1√
dm

e⊺
m

(
Lm −Lm−1[I(m−1),0]

)
=

1√
dm

e⊺
m[0, ℓm].

In view of ℓm,m =
√
dm, we arrive at b⊺mLm = 1√

dm
e⊺
k[0, ℓm] = [0, . . . , 0, 1] ∈ R1×m.

Inserting this into (5.1) proves B⊺
mLm = Im. With r := rankK, we finally have

KBm = LrL
⊺
rBm = Lr

[
Im

0

]
= Lm for all m ≤ r.

This completes the proof.

Corollary 5.5 Let U = [b⊺π(1),:, . . . , b
⊺
π(m),:]

⊺. There holds UU ⊺ = [kπ(i),π(j)]
−1
i,j=1,...,m.

Proof. Without loss of generality, we assume π(m) = m. Let

K =

[
K1,1 K1,2

K2,1 K2,2

]
and L =

[
L1,1

L1,2

]
,

where K1,1,L1,1 ∈ Rm×m. There particularly holds K1,1 = L1,1L
⊺
1,1. Furthermore, the

theorem yields

B⊺L =

[
U
0

]⊺ [
L1,1

L1,2

]
= U ⊺L1,1 = I,

which shows U ⊺ = L−1
1,1 or U = L−⊺

1,1. Combining this with the previous argument yields

K−1
1,1 =

(
L1,1L

⊺
1,1

)−1
= L−⊺

1,1L
−1
1,1 = UU ⊺.

Remark The well known Nyström method for the low-rank approximation of kernel
matrices randomly selects data sites xπ(1), . . . ,xπ(m) and computes the approximation

K ≈ [K(xi,xπ(j))] i=1,...,n
j=1,...,m

[K(xπ(i),xπ(j))]
−1
i,j=1,...,m[K(xπ(i),xj)] i=1,...,m

j=1,...,n
.

The previous corollary shows that this is equivalent to a pivoted Cholesky decomposition
with pivots π(1), . . . , π(m). △

Corollary 5.6 Let (H, ⟨·, ·⟩H) be an RKHS. Given the canonical feature vector Φ(x) :=
[K(xi,x)]

N
i=1, the Newton basis N (x) := B⊺Φ(x) forms an orthonormal system in H,

i.e., ⟨Ni, Nj⟩H = δi,j for i, j = 1, . . . ,m, where m = rankB.

Proof. There holds

⟨N ,N ⊺⟩H = B⊺⟨Φ,Φ⊺⟩HB = B⊺KB = B⊺L = Im

by the third part of the previous theorem.
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Remark There holds

span{N1, . . . , Nm} = span{K(xπ(1), ·), . . . , K(xπ(m), ·)} ⊂ span{φ1, . . . , φN}.

△

The orthogonal projection of a function f ∈ H onto the subspace spanned by N1, . . . , Nm

is easily computed by

Pf :=
m∑
i=1

Ni⟨Ni, f⟩H = N ⊺B⊺f = Φ⊺BB⊺f .

In particular, there holds

[(Pf)(xi)]
N
i=1 = KBB⊺f = LB⊺f .

Given a (low-rank) factorization of the kernel matrix K, we can directly compute the
least square solution to the linear system

Kc = f .

Theorem 5.7 Let K ≈ LL⊺ be the pivoted Cholesky decomposition of the kernel
matrix K. A minimum norm solution of the problem

∥LL⊺x− f∥2 → min

is given by
x† = L(L⊺L)−2L⊺f .

The cost for the computation of the solution is O(Nm2), where m = rankL.

Proof. The Gaussian normal equations read

LL⊺LL⊺x = LL⊺b.

Inserting x† = L(L⊺L)−2L⊺b into the normal equations yields

LL⊺LL⊺L(L⊺L)−2L⊺b = LL⊺b.

Therefore, x† solves the Gaussian normal equations and is consequently a minimum norm
solution.

Remark The matrix (L⊺L)−2 has condition number (condL)4 and therefore easily be-
comes ill-conditioned. To mitigate this, one may compute the QR-decomposition QR =
L. Then, there holds L⊺L = R⊺Q⊺QR = R⊺R. The action of (L⊺L)−2 can thus be
computed by solving two linear systems using forward- and backward-substitution. △
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6. Optimal recovery

We consider the following

Problem 6.1 (Optimal recovery) Given values f1 := λ1(f), . . . fN := λN(f) ∈ R, where
{λ1, . . . , λN} is a set of linearly independent linear functionals (called information func-
tionals), how can we best approximate the value λ(f) of a known functional λ for an
unknown function f?

In the Hilbert space setting, the solution to this problem is given by the minimum-norm
interpolant, i.e., the function g⋆ ∈ H with

λi(g
⋆) = λi(f), i = 1, . . . , N (6.1)

and
∥g⋆∥H = min

g∈H:(6.1)
∥g∥H

We present three corresponding optimality results for radial basis function interpolation.
As a preparation, we require two Lemmata.

Lemma 6.2 Let K be a strictly positive definite kernel. Then, there holds

⟨sf , sf − g⟩NK(Ω) = 0

for all interpolants g ∈ NK(Ω) with g(xi) = f(xi) for i = 1, . . . , N .

Proof. There holds

⟨sf , sf − g⟩NK(Ω) =

〈 N∑
j=1

cjK(xj, ·), sf − g

〉
NK(Ω)

=
N∑
j=1

cj⟨K(xj, ·), sf − g⟩NK(Ω)

=
N∑
j=1

cj
(
sf (xj)− g(xj)

)
= 0,

since sf and g both interpolate f .

Lemma 6.3 Let K be a strictly positive definite kernel. Then, there holds

⟨f − sf , h⟩NK(Ω) = 0 for all h ∈ span{φ1, . . . , φN}.

Proof. Exercise!
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A straightforward consequence is a Pythagorean theorem.

Corollary 6.4 There holds

∥f∥2NK(Ω) = ∥f − sf∥2NK(Ω) + ∥sf∥2NK(Ω).

Proof. Exercise!

Theorem 6.5 (Optimality I) Let K be a strictly positive definite kernel. Then, given
the values f1, . . . , fN , the interpolant sf is the minimum-norm interpolant, i.e.,

∥sf∥NK(Ω) = min
g∈NK(Ω):g(xj)=fj

∥g∥NK(Ω).

Proof. From Lemma 6.2, we have

⟨sf , sf − g⟩NK(Ω) = 0.

This yields

∥sf∥2NK(Ω) = ⟨sf , sf − g + g⟩NK(Ω). = ⟨sf , g⟩NK(Ω)

for any interpolant.
By the Cauchy-Schwarz inequality, we finally at

∥sf∥2NK(Ω) ≤ ∥sf∥NK(Ω)∥g∥NK(Ω).

Dividing by ∥sf∥NK(Ω) yields the assertion.

The next optimality theorem is a version of Céa’s lemma.

Theorem 6.6 (Optimality II) Let K be a strictly positive definite kernel. Then, sf is
the best approximation to f ∈ NK(Ω) within span{φ1, . . . , φN}, i.e.,

∥f − sf∥NK(Ω) ≤ ∥f − g∥NK(Ω) for all g ∈ span{φ1, . . . , φN}.

Proof. There holds by the orthogonality from Lemma 6.3 and the Cauchy-Schwarz in-
equality that

∥f−sf∥2NK(Ω) = ⟨f−sf , f−sf⟩NK(Ω) = ⟨f−sf , f−g⟩NK(Ω) ≤ ∥f−sf∥NK(Ω)∥f−g∥NK(Ω).

Dividing by ∥f − sf∥NK(Ω) yields the assertion.

Remark The previous two optimality theorems also hold for strictly conditionally posi-
tive definite kernels, given that the point set X = {x1, . . . ,xN} is unisolvent. △

We state the last optimality theorem in the context of quasi-interpolation without proof.
It states that the kernel interpolant is better than any linear combination of function
values in the pointwise sense.
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Theorem 6.7 (Optimality III) Let K be strictly conditionally positive definite with
respect to P ⊂ C(Ω) and assume that X is P -unisolvent. Then there holds∣∣∣∣f(x)− N∑

j=1

f(xj)ℓj(x)

∣∣∣∣ ≤ ∣∣∣∣f(x)− N∑
j=1

f(xj)cj

∣∣∣∣
for any choice c1, . . . , cN ⊂ R with c⊺P = 0.
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7. Least squares approximation

As we have shown in the previous chapter, the kernel interpolation solves a constraint
optimization problem. We adopt this perspective here, but make the more general as-
sumption that our ansatz is of the form

sf,m :=
m∑
j=1

cjK(x̃j, ·),

where x̃1, . . . , x̃m are not necessarily contained in X. Then, we are looking for a vector
c ∈ Rm which minimizes the quadratic form

1

2
c⊺Qc

for some symmetric and positive definite matrix Q, subject to the linear constraints

Ac = f

with the generalized Vandermonde matrix A ∈ RN×m. This constraint optimization
problem is solved by minimizing

L(c,λ) := 1

2
c⊺Qc− λ⊺(Ac− f)

with the Lagrange multipliers λ ∈ RN . The unique minimum of L(c,λ) is obtained from
the solution of the saddle point formulation[

Q −A⊺

A 0

] [
c
λ

]
=

[
0
f

]
.

The solution is obtained by block Gaussian elimination in accordance with

λ = (AQ−1A⊺)†f ,

c = Q−1A⊺λ.

In the particular case that m = N , x̃i = xi, and A = Q = K, we find

c = λ = K−1f ,

as in the previous chapter. However, the presented approach is more general as it also
considers the cases N < m (underdetermined least squares) and N > m (overdetermined
least squares), where the matrix Q takes the role of a regularization term.
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In the case that Q = [K(x̃i, x̃j)]
m
i,j=1 represents the native space norm of the interpolant,

we obtain the least-squares problem

min
c∈Rm

1

2
∥Ac− f∥22 +

ω

2
∥sf,m∥2NK(Ω).

The ridge parameter ω controls the tradeoff between the smoothness and the fit of sf,m.
Finally, if we choose m = N , x̃i = xi, and A = Q = K, this minimization problem
becomes

min
c∈RN

1

2
∥Kc− f∥22 +

ω

2
c⊺Kc.

The first order optimality condition reads

K2c+ ωKc = K(K + ωI)c = Kf

If K has a trivial kernel, this equation is satisfied iff

(K + ωI)c = f .
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8. Support vector machines

Given N points X = {x1, . . . ,xN} ⊂ Rd and labels yi ∈ {−1, 1} for i = 1, . . . , N , we
introduce the sets

X+ := {xi ∈ X : yi = 1},
X− := {xi ∈ X : yi = −1}.

(8.1)

We are interested in solving the following classification problem.

Problem 8.1 (Binary classification problem) Given the two sets X+ and X− from (8.1),
find a function f : Rd → R such that f(x) > 0 for all x ∈ X+ and f(x) < 0 for all
x ∈ X−.

In the easiest case, the two sets can be split by a separating hyper-plane.

Definition 8.2 The sets X+ and X− are called linearly separable, iff there exists a
separating hyper-plane H = {x ∈ Rd : n⊺x = m} such that n⊺x > m iff x ∈ X+ and
n⊺x ≤ m iff x ∈ X−.

If X+ and X− are linearly separable, it is sufficient to determine an affine map

f(x) = w⊺x+ b,

whose zero levelset S := {x ∈ Rd : f(x) = 0} serves as separator. More precisely, we wish
to determine a vector w ∈ Rd and a threshold b such that the following two separation
conditions are satisfied:

w⊺xi + b ≥ 1, if yi = 1,

w⊺xi + b ≤ −1, if yi = −1.

These conditions can be summarized according to

yi(w
⊺xi + b) ≥ 1 for all i = 1, . . . , N.
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x

y

w
⊺ x

+
b =

1

w
⊺ x

+
b =

0

w
⊺ x

+
b =

−1

2∥
w
∥
2

−
b

∥
w
∥
2

w

Given that X+ and X− are linearly separable, typically there exists more than one solution.
Therefore, we aim to find a separator that maximizes the distance from X+ and X−
(maximal margin). In this case, there exist points x+ ∈ X+, x− ∈ X−, such that

w⊺x+ + b = 1, w⊺x− + b = −1,

which are called support vectors. Taking any pair of such points, we have

w⊺(x+ − x−) = 2.

From this, we obtain the separator by solving the maximization problem

1

∥w∥2
w⊺(x+ − x−) =

2

∥w∥2
→ max .

The latter es equivalent to the minimization problem

1

2
∥w∥22 =

1

2

d∑
i=1

w2
i → min .

Imposing the separation conditions finally yields the constrained optimzation problem

min
[w,b]⊺∈Rd+1

1

2

d∑
i=1

w2
i , such that yi(w

⊺xi + b) ≥ 1 for all i = 1, . . . , N. (8.2)

A solution [w⋆, b⋆]⊺ to (8.2) gives rise to the hard margin SVM classifier according to

c(x) = sign(w⊺x+ b). (8.3)

We have the following

Fact 8.3 Let X = {x1, . . . ,xN} ⊂ Rd with labels yi ∈ {−1, 1} for i = 1, . . . , N
be given. If the sets X+ and X− are non-empty and linearly separable, then the
optimization problem (8.2) has a unique solution [w⋆, b⋆]⊺ with w⋆ ̸= 0.

To solve the optimization problem (8.2), we introduce the N non-negative Lagrange mul-
tipliers λi, i = 1, . . . , N and consider the Lagrange functional

L(w, b,λ) =
1

2
∥w∥22 −

N∑
i=1

λi

(
yi(w

⊺xi + b)− 1
)
. (8.4)
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The constrained optimization problem (8.2) is now eqivalent to the unconstrained one

min
[w,b]⊺∈Rd+1

max
λ∈RN

L(w, b,λ),

which is called the primal problem.
Minimizing L with respect to w and b yields the first order optimality conditions

∂

∂w
L(w, b,λ) = w −

N∑
i=1

λiyixi = 0,

∂

∂b
L(w, b,λ) = −

N∑
i=1

λiyi = 0.

(8.5)

In addition, we have to satisfy the complementarity conditions

λi ≥ 0, yi(w
⊺xi + b)− 1 ≥ 0, λi

(
yi(w

⊺xi + b)− 1
)
= 0, i = 1, . . . , N. (8.6)

Equations (8.5) and (8.6) are known as Karush-Kuhn-Tucker conditions (KKT). They
are necessary and sufficient for the existence of an optimal solution. Particularly, (8.6)
ensures that either xi is lying on the hyperplane yi(w

⊺xi + b) = 1 or λi = 0.
Inserting (8.5) into (8.4) eliminates the variables w, b according to

L(w, b,λ) =
N∑
i=1

λi −
1

2

N∑
i,j=1

λiλjyiyjx
⊺
ixj =: −f(λ).

The optimization problem

min
λ∈RN

f(λ), such that
N∑
i=1

λiyi = 0, λi ≥ 0, i = 1, . . . , N (8.7)

is called the dual problem to (8.2).
Vice versa, wa can solve (8.2) by solving (8.7) and inserting (8.5). Therefore, we have the
following

Theorem 8.4 Let λ⋆ ∈ RN be a solution to the dual problem (8.7). Setting

w⋆ :=
N∑
i=1

λ⋆
i yixi

and choosing b⋆ such that yi
(
(w⋆)⊺xi+b

)
= 1 for any i ∈ {1, . . . , N} with λi ̸= 0 yields

the solution [w⋆, b⋆]⊺ to (8.2).

A solution to the dual problem exists whenever the conditions of Fact 8.3 are satisfied.

Remark Since f in (8.7) is not strictly convex, the solution may not be unique. The
optimization problem can efficiently be solved by the active set method. △
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We finish this chapter by considering the situation that the sets X+ and X−, cp. (8.1), are
not linearly separable. In this case, we replace the inner product x⊺y in (8.3) by the inner
product of the canonical feature map, i.e., ⟨K(x, ·), K(y, ·)⟩H = K(x,y) for all x,y ∈ X.
In what follows, we assume that the data (φi, yi), i = 1, . . . , N , is linearly separable in
the RKHS H. Then there exist

w ∈ HX := span{K(x1, ·), . . . , K(xN , ·)} ⊂ H, b ∈ R

such that
yi
(
⟨w,K(xi, ·)⟩H + b

)
≥ 1 for all i = 1, . . . , N. (8.8)

Remark The kernel interpolant

w(x) =
N∑
i=1

yiℓi(x)

obviously satisfies w(xi) = yi for i = 1, . . . , N and, hence, (8.8) for b = 0. Therefore, the
existence of a solution is guaranteed whenever the kernel is strictly positive definite. △

Analogously to the linear case, the weight is obtained by solving the optimization problem

min
(w,b)∈HX×R

1

2
∥w∥2H, (8.9)

such that the constraints (8.8) are satisfied. The existence and uniqueness of a solution is
obtained analogously to Fact 8.3. Considering the dual problem yields the optimization
problem

min
λ∈RN

1

2

N∑
i,j=1

λiλjyiyjK(xi,xj)−
N∑
i=1

λi

with the constraints
N∑
i=1

λiyi = 0, λi ≥ 0, i = 1, . . . , N.

Given a solution λ⋆, we retrieve w⋆ via

w⋆ =
N∑
i=1

λ⋆
i yiK(xi, ·)

and b⋆ by a choice such that

yi
(
⟨w,K(xi, ·)⟩H + b⋆

)
= 1

for any i ∈ {1, . . . , N} with λi ̸= 0. The classifier is then finally given by

c(x) = sign

( N∑
i=1

λ⋆
i yiK(xi,x) + b⋆

)
.
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